
AD-A246 174

NAVAL rdSTGRADUATE SCHOOL U-'
Monterey, California

LECTff
FEB 11992?Ui

THESIS

ITERATIVE METHODS FOR PARAMETER ESTIMATION

by

William R. MacHardy

December 1990

Thesis Advisor: Murali Tummala

Approved for public release; distribution is unlimited

92-04360

.) 2 2 0 4 KIIfIIIH



UNCLASSIFIED
KCURITY CLASSIFICATION OF THIS PAGE

Form Approved

REPORT DOCUMENTATION PAGE OB No 704-oe

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

* UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION /DOWNGRADING SCHEDULE distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

Naval Postgraduate School EC Naval Postgraduate School
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO. NO. ACCESSION NO

11. TITLE (Include Security Classification)

ITERATIVE METHODS FOR PARAMETER ESTIMATION

12. PERSONAL AUTHOR(S) I

MACHARDY, William Robert
13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

Master's Thesis FROM TO1990 December 105
16 SUPPLEMENTARY NOTATION The views expressed in this thesis are those of the
author and do not reflect the official policy or position of the Depart-
ment of Defense of the US Government.
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP finite impulse response; infinite impulse response;
matrix splitting; matrix partitioning; Toeplitz;

I fl symmetric, condition number
19 ABSTRACT (Continue on reverse if necessary and identify by block number) Startirg with a least squares formula-
tion of the parameter estimation problem, both fixed data and data-adaptive iterative
algorithms are developed. We apply two new techniques, namely diagonal pertubation.and
multiple partitioning, to existing finite impulse response (FIR) and infinite impulse re-
sponse (IIR) fixed data matrix splitting algorithms, resulting in improved performance.
Also, we extend the-fixdd data algorithms to the data-adaptive case, and contrast them
with FIR and IIR recursive least squares (RLS) algorithms. Computer simulations are used
to evaluate the computational effectiveness of the new algorithms. We show the general
rate of convergence for the algorithms, evaluate their ability to correctly represent the
spectral components of simulated system frequency response in noise, and present system
performance when the order of the model is chosen to be larger than the known system
order (over-modeling).

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT ' 21. ABSTRACT SECURITY CLASSIFICATION

[fUNCLASSIFIEDIUNLIMITED 0 SAME AS RPT DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

TUMMALA, Murali 408-646-3217 1 EC/Js
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

S/N 0102-LF-014-6603 UNCLA SS IF IED
i



Approved for public release; distribution is unlimited

Iterative Methods for Parameter
Estimation

by

William R. MacHardy
Captain, US Army
B.S, USMA, 1979

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

December, 1990

Author:

Approved by: :__

Murali Tummala, Thesis Advisor

Charles W. Therrien, Second Reader

Michael A. Morgan, Chairmaa/
Department of Electrical and Computer Engineering

ii



ABSTRACT

* Starting with a least squares formulation of the parameter estimation problem,

both fixed data and data-adaptive iterative algorithms are developed. We apply two

new techniques, namely diagonal pertubation and multiple partitioning, to existing

finite impulse response (FIR) and infinite impulse response (IIR) fixed data matrix

splitting algorithms, resulting in improved performance. Also, we extend the fixed

data algorithms to the data-adaptive case, and contrast them with FIR and IIR

recursive least squares (RLS) algorithms. Computer simulations are used to evaluate

the computational effectiveness of the new algorithms. We show the general rate

of convergence for the algorithms, evaluate their ability to correctly represent the

spectral components of simulated system frequency response in noise, and present

system performance, when the order of the model is chosen to be larger than the

known system order (over-modeling).
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I. INTRODUCTION

The general field of system modeling and parameter estimation is a rich and

current area of research. In this thesis we apply four principal concepts to solving the

least squares normal equations, which have the general form:

Ra = r (1.1)

where R is the data correlation matrix, a is the parameter vector to be determined,

and r is the cross-correlation vector. First, we desire to iteratively solve the problem

rather than use direct inversion of the correlation matrix R. Second, we use a Toeplitz

approximation matrix splitting technique [Ref. 1, 2] to set up the iterative equations.

Third, we increase the diagonal dominance of the correlation matrix R in order to

improve the convergence properties of the iterative equations. Finally, we partition

the normal equations (1.1) in order to improve the computational efficiency and rate

of convergence of the iterative algorithms. In all these cases our interest is to study

both fixed data or off-line algorithms and data-adaptive or online algorithms.

A. PERFORMANCE CRITERIA

The performance criterion for the algorithms developed in this thesis is based

on a least squares formulation. The algorithms minimize the sum of the squared

error between the true system output and the estimated system output. We choose

to use the covariance method for setting up the problem in order to remain within the

available data. Although the covariance method causes the data correlation matrix

R of (1.1) to be non-Toeplitz, it has the potential to provide a less biased parameter

estimate than the autocorrelation method [Ref. 3].

• m =mm m m nunm nmummnuu n la~g nnm m N N~m INI mnNN |1



B. THESIS OVERVIEW

This thesis is divided into five chapters, including the Introduction. In Chapter

II we explicitly develop the least squares data formulation for both the finite impulse

response (FIR) and infinite impulse response (IIR) system models. For the IIR system

we take special care to account for the dependency of the filter output on the input

and output filter coefficients. Chapter III presents iterative algorithms for FIR sys-

tems. First we consider the fixed data case, and present the simplistic Gauss-Siedel

algorithm as a way of introducing the concepts of matrix splitting and iteration. Then

we present the Toeplitz approximation matrix splitti,.g algorithm, and develop two

modified versions of it. Here we apply two new techniques: diagonal pertubation and

multiple partitioning. Next, we develop and contrast a new data-adaptive algorithm

with the well known recursive least squares (RLS) algorithm. IIR systems are inves-

tigated in Chapter IV. First we present the fixed data IIR Toeplitz approximation

iterative algorithm, and then attempt to apply diagonal pertubation and partition-

ing to it. Achieving marginal success for the fixed data case, we then turn to the

data-adaptive case. Here we develop a new data-adaptive IIR algorithm based on the

Toeplitz approximation matrix splitting that was used in the fixed data case. This

algorithm performs well, and does not have the stability problems associated with

the IIR RLS algorithm, which we present for comparison. In the final chapter, we

summarize the results of simulation and recommend topics for future research.
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II. LEAST SQUARES DATA FORMULATION

The central problem of this thesis is to determine the parameters of an optimal

linear filter based on the input and output measurements of a system. For the system

shown in Figure 2.1, both the input data sequence x(n) and the output data sequence

y(n) are known. The objective is to determine a linear filter, or model system which

produces the output from the given input. Using least squares minimization tech-

niques gives a filter that is optimal when it minimizes the sum of the squared error

between the known output y(n) and the filter output (n). The first section of this

chapter contains the least squares data formulation for the finite impulse response

(FIR), or non-recursive filter. The next section presents the least squares data for-

mulation for the infinite impulse response (IIR), or recursive filter, which has some

subtle but significant differences from the FIR case. This chapter concludes with

some generalizations about the algorithms to be developed.

MODEL (n)

SYSTEM

x(n) --- +r ERROR

UNKNOWN4

SYSTEM y(n)

Figure 2.1: Fundamental System Model
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A. FINITE IMPULSE RESPONSE (FIR) MODELS

Consider an Mth-order FIR filter with input x(n) and output (n). The output

at time n is simply a weighted linear combination of the input:

9(n) = x(n)aM + x(n - 1)a M + ... + x(n - M)aM. (2.1)

This can be written as

(n) = xnaM, (2.2)

where x, = [x(n) x(n-1) ... x(n-M)] is a 1 x M+1 input data vector, aM - [am am

... aM]T is a M+ 1 x 1 vector containing the filter weights, or coefficients, and (n) is

the filter output at time n. The superscript M indicates that these are the coefficients

of an Mth-order filter. Because the true value of aM is not known, equation (2.2)

produces an estimate for the output, (n). Consequently, the error e(n) between the

true output y(n) and the FIR filter output (n), is given by

e(n) = y(n) - #(n) = y(n) - xnaM. (2.3)

The key to a least squares solution of equation (2.2) for aM is forming an

overdetermined set of P + 1 equations (where P > M is necessary for a unique

solution):

g(n) x(n) x(n- 1) ... x(n- M) am

= (- 1) = x(n-1) x(n-2) ... x(n-M-1) am

O)n -P) x(n - P) x(n- P-1) .. x(n- M- P) am

Xn

= x-1 m (2.4)

this can be written more compactly in matrix notation as

S=XaM. (2.5)

4



Equation (2.5) is overdetermined in the sense that there are more equations than

there are unknowns, or, equivalently, there are more rows of the data matrix X than

there are coefficients in the filter coefficient vector aM. Using (2.5), the error vector

can be written as: e = y - = y - XaM. An optimal least squares solution minimizes

the sum of the squared errors C, which is represented as:

C= E je(J)j 2 = e Te

3 =n-P
= (y- XaM)T(y _XaM)

= (yT - aMTXT)(y - XaM)

Sy Ty-y T XaM - aMTXTy+a A MTXTXa. (2.6)

The minimization is accomplished by taking the derivative of the sum of the squared

errors C with respect to the filter coefficient vector aM [Ref. 4] and setting it equal

to zero:

9(aM) = 0 - 2XTy + 2XTXaM 0 O. (2.7)

Rearranging gives

XTXaM = XTy (2.8)

as the requisite condition for C to be minimum. It is important to notice that the input

data which forms X, and the true output data contained in y are independent of the

filter coefficients contained in aM. Because (2.8) contains the estimate of the optimal

Mth-order FIR filter coefficients aM, solving (2.8) determines the optimal FIR filter.

Therefore, equation (2.8) defines the FIR filter problem to be solved in Chapter III.

A more standard representation of (2.8), referred to as the normal equation is

Ram = r, (2.9)

where R = XTX is referred to as the correlation matrix, and r = XTy is the cross-

correlation of the input data matrix X and the output data vector y. Theoretically

5



if R is full rank, the solution to (2.9) is given by aM - R-'r. This thesis presents

iterative algorithms which are alternatives to the direct inversion of R. Directly

inverting R to solve (2.9) has three major shortcomings:

1. Direct inversion is computationally intensive; on the order of M3 multiplications

for a M x M correlation matrix R.

2. If R is nearly singular, or very poorly conditioned it may not be possible to

compute R- 1.

3. Unlike iterative algorithms, direct inversion cannot provide an incremental es-

timate of the solution.

B. INFINITE IMPULSE RESPONSE (IIR) MODELS

The general causal linear IIR filter is more complicated than the FIR filter

presented above. This is because the filter output (n) is a linear combination of the

input x(n), x(n - 1), ... , x(n - M), as well as the previous output (n - 1), (n - 2),

... , (n - N), where M and N are the order of the input and output coefficients,

respectively. Starting with the difference equation representation of the IIR filter:

P(n) = P(n-1)b+ (n-2)b +...+(n-N)bN

+ x(n)aM + x(n- 1)a +... + x(n- M)aM , (2.10)

which can be written as

bN

P(n) = zno, (2.11)

where Z, = [kn,-1 : x.] = [P(n - 1) P(n - 2) ...P(n - N)/: x(n) x(,n - 1) .. x(n - M)I

isal am

6



is a N + M + 1 x 1 vector containing the IIR filter weights. Again, because the true

value of bN and aM are not known, equation (2.11) will only produce an estimate

for the output, (n). Thus, the error between the true output y(n) and the IIR filter

output (n), is given by

e(n) = y(n) - y(n) = y(n) - zn. (2.12)

As before, the least squares solution to (2.11) for 6 comes from an overdeter-

mined set of P + 1 equations (where P > N + M is necessary for a unique solution):

: (n) 1

X(, - P) Ii bN'
9(n - 1) ..• (n N) : (n) ... x(n - M ):

- (n-2) (n-N-1) x(n-1) - x(n-M-1) b [

ao
n - P-l1) ... N N- P) x (n - P) .. (n- M-P) :

aM

Yn-1 Xn Zn

= Yn-2 :xn 1  0= 0 (2.13)

Zn-p

or, in matrix notation

k, = Z0, (2.14)

where the data matrix Z = [- zn -- z.-p]T, which is used to form an error vector,

e = y - Ze. Once again, the optimal least squares solution minimizes the sum of the

squared errors C, which now has the form:

7



E le(J) 2 = e e
j=n-P

= (y- zO)T(y- Z)

= (YT_ OTZT)(y_ ZO)

= yTy Y TZO _ oTZTy + oTZTZo. (2.15)

If the gradient terms that arise from formal differentiation are neglected, the derivative

of the sum of the squared errors C with respect to the filter coefficient vector 0 is:

(C) = 0 - 2ZTy + 2ZTZ9 = 0. (2.16)

Rearranging gives

ZTZO = ZTy (2.17)

as the requisite condition for C to be minimum. Again, (2.17) contains the estimate

of the IIR filter coefficients 0, and its solution determines the optimal least squares

IIR filter. Therefore, equation (2.17) defines the IIR filter problem to be solved in

Chapter IV, and the normal equation representation is

Ro = r, (2.18)

where R = ZTZ is referred to as the correlation matrix, and r = ZTy is the cross-

correlation vector.

The differentiation in (2.16) appears quite simple because it ignores the de-

pendence of the filter output j(n) on the previous filter input and output. Formal

differentiation of ( gives [Ref. 51:

_0(b) N( [ ,0()= °' 7=
' -p(y(j)- (  I -0. (2.19)

(e) M -p(Y( j)

8



Letting f3,, = " and a,,= 24n represent the vector partial derivatives of tne filter

output, we can write

[ ] (Y(J) -zo) = O, (2.20)
j=n-P j

or, rearranging and letting ikj = ['3 Jf]T gives

=n- P =n-P

TZO0 = Ty (2.21)
R r

so that we have the same form as the normal equations of (2.18), Re = r. However,

R no longer represents the autocorrelation of the data matrix Z. In this case R

represents the cross-correlation matrix between the gradient components of the filter

output T0 and the filter data matrix Z, and r represents the cross-correlation between

T and the true output vector y.

Regardless of the formulation, a standard solution to (2.18) is given by 0 =

R-1r. Again, the objective is to present iterative algorithms which are alternatives

to the direct inversion of R. Finally, for the algorithms presented in this thesis, there

are three general characteristics governing their suitability:

1. The algorithm should use the minimum amount of data required to produce a

solution.

2. The algorithm should converge quickly. The desired number of iterations of the

algorithm should not exceed 2 to 3 times the number of parameters being solved

for.

3. The computational complexity of the algorithm should be less than that of

direct inversion.

9



III. FINITE IMPULSE RESPONSE (FIR)
SYSTEMS

In this chapter we consider the finite impulse response (FIR) system. We develop

two general categories of solution algorithms, fixed data and data-adaptive. The fixed

data algorithms are the Gauss-Seidel iterative method and the Toeplitz approxima-

tion iterative method. The data-adaptive algorithms are the recursive least squares

(RLS) method and Toeplitz approximation method. Before developing the solution

algorithms, it is worth noting that the basic problem formulation described in Chap-

ter II is a covariance rather than a correlation formulation of the data; therefore, the

matrix R in RaM = r is symmetric but not Toeplitz. Accordingly, we cannot apply

the Levinson recursion algorithm [Ref. 6] which requires Toeplitz structure in the

correlation matrix. In our formulation, the data matrix is formed using the covari-

ance method, which has the potential to provide a less biased least squares solution

than a correlation method formulation [Ref. 3].

A. FIXED DATA ALGORITHMS

1. Gauss-Seidel Method

A very simple and straightforward iterative algorithm is the Gauss-Seidel

method [Ref. 7]. We drop the superscript M from aM for simplicity. Unless otherwise

stated, we are considering an Mth-order FIR system. Starting with (2.9), Ra = r,

split R into L + D + U, where L is a matrix containing the strictly lower triangular

elements of R, U is a matrix containing the strictly upper triangular elements of R,

and D is a diagonal matrix containing the main diagonal elements of R. Substituting

10



this into (2.9) gives

(L + D + U)a = r, (3.1)

or

(L + D)a = -Ua + r. (3.2)

Making (3.2) into an iterative algorithm requires that we isolate the parameter vector

a on the left side of the equation. Pre-multiplying both sides of the equation by

(L + D)-':

(L + D)-1(L + D)a = (L + D)-'(-Ua + r) (3.3)

we have

a = -(L + D)-'Ua + (L + D)-'r. (3.4)

Note that (L + D) must be nonsinglar for this technique to work. Now there are two

occurrences of the parameter vector a. We define the one on the right side of (3.4) as

the current value a(k), and the one on the left side as the updated value a(k+l), where

k is the iteration index. Thus, the final form of the Gauss-Seidel iterative algorithm

is:

a(k+l) = -(L + D)-IUa(k) + (L + D)-'r. (3.5)

Unfortunately, this algorithm takes an excessive number of iterations to converge to

the true parameter values when R is even moderately ill-conditioned. In an effort

to improve this performance, we applied the successive overrelaxation (SOR) accel-

eration technique [Ref. 91 to (3.5). The SOR technique requires that we add an

acceleration parameter w as follows:

a(k+1) = -(wL + D)-1 [(1 - w)D - wU]a(k) + (wL + D)-lwr. (3.6)

Notice that when w equals 1, (3.6) degenerates into the standard Gauss-Seidel algo-

rithm. In order to speed up the rate of convergence of the algorithm, the acceleration

11



parameter w must assume its optimum value, which is given by [Ref. 91:

2(1 - -Z)wont - VT o (3.7)

Ymax

In (3.7) the term l,,ax represents the largest eigenvalue of the Jacobi matrix, which

has the form D - '(-L - U). Unfortunately, though this is a popular and usua'ly

successful acceleration technique, for the basic problem of this thesis it was found to

produce little improvement in the performance of the Gauss-Seidel algorithm.

In order to observe the performance of the algorithms developed in this

chapter, they are simulated with the following FIR system:

y(n) = 0.5x(n - 1) + 0.25x(n - 2) - 0.Sx(n - 4) + 0.053x(n - 5) + 0.0345x(n - 6)

- 0.76x(n - 7) + 3.5x(n - 8) - 1.0032x(n - 9) - 0.0031x(n - 10). (3.S)

Figure 3.1 shows the generally slow and gradual rate of convergence of the Gauss-

Siedel and Gauss-Siedel with SOR algorithms. Each parameter track line of Figure

3.1 corresponds to a coefficient in (3.8). Notice that as the number of iterations k

increases, the parameter track lines flatten out and approach the values in (3.8).

2. Toeplitz Approximation Algorithm

One reason for the slow rate of convergence of the Gauss-Seidel method is

that it fails to capitalize on the structure of the covariance matrix R. The covariance

matrix is symmetric but not Toeplitz. However, it does have an underlying Toeplitz

structure. This point becomes clear when the number of data points used to form

the matrix is increased; the covariance matrix then approaches a Toeplitz structure.

Toeplitz matricies have many nice properties, and efficient methods such as the Levin-

son recursion are available to invert a Toeplitz matrix. An iterative algorithm which

takes advantage of the near Toeplitz structure of the covariance matrix [Ref. 1) is de-

veloped by splitting R into a Toeplitz matrix T, and a residual matrix S. The matrix

12
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Figure 3.1: Parameter tracks and general rate of convergence for the stan-
dard FIR Gauss-Seidel and Gauss-Seidel with SOR algorithms.

T is obtained by averaging the diagonal elements of R. This Toeplitz approximation

provides a natural splitting of the covariance matrix, R = T + S, which is used to

develop an iterative algorithm as follows. Beginning with

Ra = r, (3.9)

substituting for R = T + S gives

(T + S)a = r, (3.10)

or, rearranging we have,

Ta = r - Sa. (3.11)

But S = R - T, thus

Ta = r - (R - T)a (3.12)

and isolating a gives

a = T-'r - T- 1 Ra + a. (3.13)

13



Finally, the iterative algorithm Las the form:

a(k+,) = T-'r - T-Ra(k) + a(k). (3.14)

And if we let a0 = T-'r be the initial estimate of the parameter vector a, then we

have:

a(k+1) = a0 + a(k) - T-Ra(k). (3.15)

The Toeplitz approximation matrix T can also be viewed in another light

[Ref. 8]. It can be thought of as a pre-conditioning matrix for R. Indeed, part

of the difficulty with the Gauss-Seidel method of the previous section is that as R

becomes more ill-conditioned, the iterative algorithm takes i, uch longer to converge.

We observed that the product T-1R does in fact have a bettei condition number than

R by at least an order of magnitude when R is very ill-conditioned. Thus, we might

expect that the algorithm of (3.15) will converge to the true parameter vector a faster

than (3.5) or (3.6). This is in fact the case. In Figure 3.2 it is clear that the Toeplitz

approximation algorithm gives much faster convergence to the true parameter values

than the Gauss-Seidel algorithm.

3. Toeplitz Approximation with Diagonal Pertubation Algorithm

One significant shortcoming of (3.15) is that it fails to converge as the

covariance matrix R becomes extremely ill-conditioned. Despite the fact that T

functions as a pre-conditioner for R, the algorithm of (3.15) will not converge as the

spectral radius (or largest eigenvalue) of (T-1 S) becomes greater than one [Ref. 9].

Gencrally, the condition number of R is an indication of aow poorly conditioned it

is. We observe that as the number of data points used to form R is reduced from

a large number (i.e., 5 to 10 times the order of the filter being solved for) to near

the minimum number required for a unique solution (i.e., the order of the filter), the

condition number of R grows quite large. Under these circumstances the algorithm of

14
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Figure 3.2: Parameter tracks and general rate of convergence for the FIR
Toeplitz approximation and the Gauss-Seidel algorithms.

(3.15) does not converge. By constrast the Gauss-Seidel algorithm always converges

to the true parameter values, although it takes an excessivly large number of iterations

for the parameter values to approach their true values (see Figure 3.3). Viewing the

ill-conditioned nature of R as an obstacle to satisfactory performance of (3.15), we

now introduce a technique which improves the condition of R and permits a modified

version of (3.15) to converge as the number of data points approaches the minimum

required.

Beginning with the fact that any identity matrix I is invertible with a

condition number of one, we seek to alter R such that it becomes more like an identity

matrix. This is accomplished by adding a diagonal matrix to R such that the resulting

matrix has its main diagonal elements at least an order of magnitude larger than any

other element in the matrix, then this new matrix has increased diagonal dominance

and begins to look more like an identity matrix. The consequence of applying this

technique is that we improve the condition of R and the performance of (3.15).
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If we let ar be a scalar multiplier and the Toeplitz approximation splitting

of R be defined as R = T,, + S, then we can derive a modified version of (3.15) as

follows. Beginning with

Ra = r, (3.16)

adding a diagonal matrix (scaled by ar) to R gives

(R + aI)a =r + aa (3.17)

and substituting for R = T,, + S we have

(T + S+ I)a = r+ aa. (3.18)

Now, letting T = T. + cr1, we can write

Ta = r +ca-Sa (3.19)

but S =R + al1- T, and substituting gives

Ta =r +ca -(R + oI-T)a. (3.20)
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After rearranging it is easy to see that the aa terms cancel

Ta = r + aa - aa - (R - T)a (3.21)

so that we can now write

a = T-'r - T-1 Ra + a. (3.22)

Now, letting ao = T-'r and rearranging, the final form of the Toeplitz approximation

with diagonal pertubation iterative algorithm is:

a(k+l) = a0 + a(k) - T-Ra(k). (3.23)

Interestingly, the algorithm of (3.23) has exactly the same form as (3.15). The only

difference is that the matrix T in (3.23) is the original Toeplitz approximation matrix

T plus some diagonal matrix al. The new algorithm of (3.23) was observed to

converge where the algorithm of (3.15) fails. It always reaches the vicinity of the true

parameter values quickly, but requires a large number of iterations to converge to

the exact solution (see Figure 3.4). In simulation, we observe that optimum values

for a are inversely proportional to the condition number of R. One difficulty with

this algorithm is that determining the optimum value for a is a problem as it is data

dependent. Therefore, achieving optimal performance of this algorithm is dependent

on finding a suitable value for a. We were unable to find a general expression for the

optimum value of a in this thesis.

4. Partitioned Toeplitz Approximation Algorithm

An alternative to improving the condition of R in (3.15) is to block partition

R. It may be partitioned into equally or unequally sized parts, however the number

of row partitions must equal the number of column partitions. We now derive a

partitioned version of (3.15). Beginning with

Ra = r, (3.24)
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partitioning R into four parts gives[1 : R12 l [ri]
........... (3.25)

.R21 :R 22 JLa 2 ] r2J

and substituting for R11 = Til + S1, and R 22 =T 22 + S22 we have

T.1..+. . I... ..... I[ a r (3.26)
R1 T22 + S22 .a] I 2

Multiplying gives the following coupled equations:

(Til + S1 )a + R 12a2 = r

(T22 + S22)a2 + R21a, = r2  (3.27)

and rearranging this yields

Tula1  = r, - R2 - la

T22= r2 - R21a1 - S22a2. (3.28)

18



But Sl = R11 - Til and S 22 = R22 - T22, thus we have

a, = Tjlrj - T 1 j1(R 12a2 + (Ril - T11)aj)

a 2 = T 2 r 2 - TI1(R 21al + (R 2 2 - T22 )a 2 ) (3.29)

and as before we let al0 = Tjj'rl and a20 = T 2r2 so that now we can write

a, = al0 + a, - T 1(R1 2a 2 + Rija l )

a2 = a 20 + a 2 - T I(R 21 a, + R 22 a2 ). (3.30)

The final form of the partitioned Toeplitz approximation iterative algorithm is

(k+) ao + - T'11(Rl2a(k) +
a,1 l a1k 1112 1.)

(k+1)=a ) - .-i(k+) (k
a2  a 0 +  2 2 ( 2 - I + 22a 2  (3.31)

This partitioning algorithm was also observed to converge to the true solu-

tion where the algorithm of (3.15) fails. Additionally, this algorithm converges to the

true solution in about the same number of iterations as that of (3.23), and this algo-

rithm does not require the choice of an optimal parameter value such as a in (3.23).

It is possible to derive iterative algorithms using this same methodology beyond the

two partitions shown in (3.25), however we did not observe a significant difference in

performance of these algorithms over the one shown in (3.31) (see Figure 3.5). Fi-

nally, it is also possible to combine diagonal pertubation and partitioning in a single

algorithm, but again we did not observe any significant improvement in performance.

B. DATA-ADAPTIVE ALGORITHMS

Although the fixed data algorithms above do provide a solution to the least

squares problem Ra = r, they require that a minimum amount of data be accumulated

before the iterative algorithm may begin and a solution determined. Consequently,
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real-time processing of signals as they are available is not possible. Data-adaptive

algorithms compute a solution based upon the inclusion of new data with each iter-

ation. They provide a means of providing a real-time system identification solution.

In this section we develop a data-adaptive algorithm by extending the Toeplitz ap-

proximation technique presented in the previous section. Also, we present the weln

known RLS algorithm for comparison.

1. Toeplitz Approximation Algorithm

In order to avoid confusion with previous developments of the basic problem

for the fixed data case, we define the following:

xn =[x(n) x(n -1)...-x(n-M)]I T  (3.32)

ao

a a, (3.33)
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so that now y(n) - xna for a specific value of the output of an Mth-order filter. For

the general problem development, we have the following:

x(n) x(n - 1) .. x(n - M) ao 1 r (n)
x(n- 1) x(n -2) ... x(n- M- 1) a, y(n-1) (3.34)

xn P)x(n- P -1) ... _~ ) am. _Jy(n -P)_
or, in vector notation we have:

T

x-1 a = y, 
(3.35)

rXn-P-

and now it is easy to see that the basic problem has the form:
T

= T

Xn- 1
[X. X,--11 ... Xn-p] a= [-- Xnx-1 ... xnPly. (3.36)

xr"

T T r

Sn-P-

It is important to realize how the data-adaptive algorithm can be derived from R and

r. Using a subscript n, we can express R and r in time vaying notation as:

R?, = R,,-.1 + x~xT  (3.37)

and

'=fn-P
= x1 , ...py(n - P) + x,,_p+1X(n - P + 1) +-.. +x,_.y(n - 1) +xy(n)

= rn._.1 + +x, y(n). (3.38)

Now that we have RP. and r1,, we can form the data-adaptive Toeplitz

approximation algorithm as in the fixed data case:

Pn = rn (3.39)

21



substituting R, = T + S,, yields

(T. + S,)a =r., (3.40)

and rearranging gives

T, a = r, - Sa. (3.41)

But S,, = R. - T, thus

Ta = r. - (R. - T,,)a (3.42)

and isolating the parameter vector a we have

a = T,-r. - T,,"'Ra + a. (3.43)

Finally, the iterative algorithm has the form:

a(k+1) = a(k) + T,-lr, - T.-Rna(k). (3.44)

This algorithm converges quickly to the true parameter values (see Fig 3.6).

Notice that both algorithms begin with time n = k = 0. The data-adaptive algorithm

begins to estimate parameter values immediately, but the fixed data algorithm must

wait until a minimum of M + 1 data points have been accumulated before it can begin

estimating parameter values for an Mth-order system. Although the data-adaptive

algorithm (3.44) outperforms the fixed data algorithm of (3.31), there is a considerable

computational tradeoff. The matricies Tn"' and R, and the vector r, must be updated

at each iteration of the data-adaptive algorithm. The matrix T; "1 is updated using

the matrix inversion lemma [Ref. 10], and Rn and rn are updated from (3.37) and

(3.38), respectively. This requires approximately 5M 2 additional multiplications for

each iteration of (3.44) as compared with the fixed data algorithm.
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2. Recursive Least Squares (RLS) Algorithm

In order to evaluate the effectiveness of the data-adaptive Toeplitz approx-

imation algorithm above, it must be compared against some benchmark. The RLS

algorithm is recognized as a particularly optimal approach to the least squares FIR

problem. A simple presentation of the update algorithm is [Ref. 51:

a(k+1) = a(k) + aR-.lXe(n) (3.45)

where a is referred to as the forgetting factor. A performance comparison between this

algorithm and that of (3.44) reveals the astonishing fact that they perform exactly

the same. Apppendix A shows several examples of this under different conditions of

noise, and over- and under-modeling. On close analysis, we note that the RLS algo-

rithm (3.45) can be expanded and rewritten in the same form as (3.44). Although

the algorithms look and perform the same, they are in fact different. Notice that R,

and rn are summed over the current and past data in (3.44), whereas these terms in

the RLS algorithm are composed of only the current data values (RX x,,Xn and
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r = xnY(n)). Interestingly, as shown in Figure 3.7, the performance of the algo-

rithms is still the same. Unfortunately, computing a more complicated R. and rn in

the Toeplitz Approximation data-adaptive algorithm requires an increase of approx-

imately 2M 2 - M multiplications over RLS. Although this increased computation

does not produce any improvement in performance over FIR RLS systems modeling,

it will give improved performance over IIR RLS, as we shall see in Chapter IV.
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IV. INFINITE IMPULSE RESPONSE (IIR)
SYSTEMS

In this chapter we consider the infinite impulse response (IIR) system. Here

again we develop two general categories of solution algorithms, fixed data and data-

adaptive. The slow rate of convergence of the Gauss-Seidel iterative algorithm applies

to IIR systems in the same way it applied to FIR systems in Chapter III. Therefore,

in this chapter we only present one fixed data algorithm, the Toeplitz approximation

iterative method. The data-adaptive algorithms are the recursive least squares (RLS)

method and Toeplitz approximation method. The same discussion regarding the use

of techniques that are Toeplitz dependent from Chapter III is applicable here as well;

our covariance formulation of the problem precludes us from using such techniques.

A. FIXED DATA ALGORITHMS

1. Toeplitz Approximation Algorithm

Here we present a Toeplitz approximation iterative algorithm [Ref. 2] of

the same structure as in the FIR case. One major difference is that we will start with

a partitioned version of the algorithm similar to that of (3.31). This is quite natural

since we are solving for two parameter vectors. One vector, aM, represents the filter

input or feedforward coefficients and the other, bN, represents the filter output or

feedback coefficients. As in Chapter III, we drop the superscripts M and N. Unless

otherwise stated, the input coefficient vector has order M, and the output coefficient

vector has order N. Thus, from Chapter II, (2.18), we begin with

Re = r (4.1)
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and partitioning R gives

Rv .. [:1=b (4.2)

We now split the matricies 4, and R.. into a Toeplitz and a residual matrix:

T y + .&y .. .y I = r.1] (4 3)

Multiplication gives the following coupled equations:

(Tvy + Svy)b + Ry.a = ry

(T.. + S.)a + R.yb = r. (4.4)

and rearranging these gives

Tyb = r,-R 1,a-Syb

T..a = r. - Ryb - S.a. (4.5)

But Sy = Rn - Ty and S. = R.,- T.,, thus

b = T 'r, - Tt,(,. a + (P - Ty)b)

a = T 'Jr,.-(Ryb+(R..- T.)a) (4.6)

and letting bo = T-'r. and ao = T-'r= as the initial estimates of the parameter

values, we have

b = bo + b- T '(R, a+R b)

a = ao + a- T.1 (Rnb + RPa). (4.7)

The final form of the fixed data hIR Toeplitz approximation iterative algorithm is:
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b(k+ l ) = bo + b(k) - T-1(PRya(k) + Ryb(k))

a(k+1) - ao + a(k) - T-'(Rb(k+l) + R,,a(k)). (4.8)

In order to evaluate the general performance of the algorithms developed

in this chapter, the following IIR system is used for simulation:

y(n) = 2.7600y(n - 1) - 3.8090y(n - 2) + 2.6540y(n - 3) - 0.9240y(n - 4)

+ z(n) - O.9x(n - 1) + 0.81x(n - 2) - 0.65x(n - 3) + o.36x(n - 4). (4.9)

Figure 4.1 shows that this algorithm gives performance similar to that of the FIR

algorithm (3.15). It converges relatively quickly when R is well-conditioned, and fails

to converge to the true parameter values as R becomes ill-conditioned.

2. Toeplitz Approximation with Diagonal Pertubation Algorithm

As in the FIR case a significant shortcoming of (4.8) is that it fails to

converge as the covariance matrix R becomes extremely ill-conditioned. We again

observe that as the number of data points used to formulate R is reduced from a
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large number (i.e., 5 to 10 times the order of the IIR filter bein; olved for) to near

the minimum number required for a unique soltion (i.e., the order of the filter), the

condition number of R grows quite large. Under theoe circumstances the algorithm

of (4.8) does not converge to the true parameter values. We now employ the diagonal

pertubation technique in a manner similar to that of Chapter III which improves the

condition of R and permits a modified version of (4.8) to converge as the number of

data points approaches the minimum required.

If we let ay and o be scalar multipliers and the Toeplitz approximation

splitting of R., and R. be defined as R. = Tyyo + Sy and R, = T,.o + X ,

respectively, then we can derive a modified version of (4.8) as follows:

RO r (4.10)

adding a diagonal matrix to Ry and R.. gives,

Rv,+ vI : R, 1 fb] i +y [oyb
............ 4.11)

and substituting for R. and RT, we have

bj = r] + [ayb]
.......................... .. (4.12)

Now, letting T. = Ty,, + a.,I and T,, = T ,, + aoI, and multiplying gives the

following coupled equations:

(Ty+Sy)b+PR,.a = r+ ayb

(T.. + S.)a + Ryb = r.T+ a.a (4.13)

and rearranging these gives
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T~yb = ry + ayb - Ra - Syyb

T..a = r. + ara - Rb - Sa. (4.14)

Substituting for Sy. = Ry, + ayI - Ty and S. = R. + orI - T. we have

Tyub = ry + ayb - Pa - (Pyy + oyI - Tyy)b

T,.a = r. + aa - R.b - (R. + orI - T)a, (4.15)

and now we see the terms ab and ao-a cancel out:

T~yb = ry + 17yb - ayb - Pa - (Ry - Tyy)b

T..a = r, + a~a - a~a - R Vb - (Rxx - T,,)a. (4.16)

After simplifying to isolate the parameter vectors, we have

b = T-'ry - T,'(P.a + (Ry - Tyy)b )

a = T.r. - T.-(R.vb + (R. - T.)a). (4.17)

Again, letting T.;ry = bo and T;,r, = ao gives

b = bo + b- T-'(Ra++ Rnb)

a = ao + a- T-1 (R.-b + R.a) (4.18)

and the final form of the Toeplitz approximation with diagonal pertubation iterative

algorithm is:

b(k+l) = bo + b(k) - T l(Pa(k) + Pb(k))

a(k+1) = ao + a(k) - T;'(Rxyb(k+l) + Ra(k)). (4.19)

The algorithm of (4.19) has exactly the same form as (4.8). Unfortunately, adding

a diagonal value dramatically slows down the rate of convergence; however, the new

algorithm (4.!9) was observed to converge where the algorithm (4.8) fails. This
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algorithm takes a large number (i.e., several hundreds or thousands) of iterations just

to reach the vicinity of the true parameter values, and still requires a large number of

further iterations to converge to the correct solution. We did observe that appropriate

values for . and o,, are inversely proportional to the condition number of RP, and

R.., respectively. Unfortunately, even the optimal performance of this algorithm is

unsatisfactory (see Figure 4.2).

3. Partitioned Toeplitz Approximation Algorithm

In this section we block partition R, and R , in an attempt to improve the

performance of (4.8). As before, the number of row partitions must equal the number

of column partitions. Similar to previous developments we now derive a partitioned

version of (4.8). Beginning with

Re = r, (4.20)
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partitioning twice gives:

RY 2  I RY 22  kRy 21 I RYX22b2 r.2
-- -- -. (4.21)( JY, Rzy, 2  Rx I Rxx 2  a, .

RXV21 RXV22 RX 21  R X22 a2  r.2

Splitting the diagonal blocks into a Toeplitz and a residual matrix we have

TYY1 I +±SY1 11  RyI '412 IRT1 Y1

Rv1 1 21  TYY2 2 + SYV22 R 4 R 22

(Rxyl, Rt 12  Tx( jj + Sxxll RXX~12

R- 1 1 2 1 I RTY1 2 2 R21 I TXX 2 2 + STX2 2

b , r l

b2 r 2
-- = -- (4.22)
a, r 1

a2 r. 2

Multiplying gives four coupled equations:

(T~,p 11 + Sy211 )bl + RY12 b2 + R11. 11a, + J4%,12a2 = y

(TY22 + SV22 )b2 + R 21 b, + RP 21a, + R,,a2 = r.

(T. 11 + S. 11 )al + Rtl 1b1 + R 1 12b 2 + R- 1 2a2 = r.1

(T--22 + S-- 22)a 2 + R-, 2 1b, + R Y22b 2 + R -21a = r.2 (4.23)

and rearranging yields
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VVbj= r,- R" 12 b 2 - Ry:11,ai - -Ry,, 2a2 - yIb

TVY 22b 2 = rY2 -RYbl -%2a - A,2 - V2b

T,1,= r,- Ryl,- R,, 1 2 b2 - R,, 12 a2 - S., 11a,

T_-, 22a2 = rT2 - R--Y2 1b, - Rxy22b2 - R1,- S,, 22a2. (4.24)

Now, isolating the parameter vectors and substituting for Sy. 11 = Ryj- Ty. 11, etc.,

b= T1r- T-'11 (RY, 12b2 - Ry. 11a, - Ry,1 2a2 - (Ryl- vlbl

= y T 22 1V2 - Y2 RV - RY 2 ,aj - RYM22a - (RYY22 - V2))

a, = T,-,11r,1 - Tzxj(_yjj- R?1b2- R. 12a2 - (Rxxll - ,,)i

a2 = T,2r - Txl2RT2 - R -2 - (R-- 22 - T-- 22)a2) (4.25)

and letting bl10  T;Il11 r Y1 etc., as the initial estimate of the parameter vectors, we

have

b,= bl0 + b, - TY-Y1 I(RW12b 2 - R,. 11a, - RY- 12a2 - Rn1 1 b1 )

b= b20 + b2 - ;1 I22 (JRW 21 bl - RTa,- RJ4- 2 2 a2 -R.22

a, = a10 +. a, - T.j 1 (Rzyjjbj - Rlb2- R,,, 12a2 - ,,ll

a2 = a20 + a2 - T.-.22 (Rn 2 lb, - R2b - R.-21 a, - R2=22a2). (4.26)

The final form of the partitioned fixed data Toeplitz approximation iterative algorithm

is:

bjk1 1  lk ~ 1 R~( 1 bk tiik) M viak - jI I1 ~)
I~1 = b10 +bk T' ,b(k) - R 11ak) a2I1

b('+') - ab + b - T- -PY1 2 - )

k1 ) k)T(iiR 1  k+l) _R (1 2bk) -R iak)- nbk

a(k+1) a k) + ; 22 R 2 bk+1) R b(k+l) (k (~:2 ak)).

a = -2 + a11 22 2 122TX2(Vbk+)-& b - &,21 1k+1) a~k

(4.27)
This partitioned Toeplitz approximation algorithm was observed to con-

verge to the true solution where the algorithm (4.8) fails, however it has the same
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Figure 4.3: Parameter tracks and general rate of convergence for the IIR
partitioned Toeplitz approximation algorithm.

problem as the diagonal pertubation technique. It takes an excessive number of itera-

tions for the algorithm to approach the vicinity of the true parameter values and even

longer to converge exactly (see Figure 4.3). Since this is not acceptable performance

(even marginally), we therefore turn to data-adaptive techniques in order to achieve

the desired result.

B. DATA-ADAPTIVE ALGORITHMS

1. Toeplitz Approximation Algorithm

Extending the development from equations (4.1)-(4.6) to the time-varying

case gives the desired data-adaptive IIR Toeplitz approximation algorithm:

b(+1) = b(k) + Tyy- 1(rn - Rza(k) - Rnb(k))

a(k+l) = a(k) + Txx 1 (r-,, - P-Vb(k) - zna(k)) (4.28)

where the subscript n denotes time variation. The neat and clean appearance of

this algorithm is deceptive. Each of the terms with a subscript n must be updated
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during each iteration. Consequently, this algorithm is somewhat computationally

intensive. The entire algorithm is coded in matlab and is listed in Appendix D. It

uses the matrix inversion lemma to compute the T1 ,n and T, updates. Updating

the rest of the time varying terms is similar to the process shown in (3.37) and

(3.38). We observed that the algorithm gave better results for over-modeling than

exact modeling. An example of over-modeling is where the true system output was

generated from a 4th-order system (M = N = 4), but we are using a 6th-order model

(M = N = 6) in the algorithm. The results for this case are shown in Figure 4.4.

Here we see that the parameter values converge in about 15 to 20 iterations. To

see whether this 6th-order model faithfully represents the true 4th -order system, we

must look at the frequency response of the model versus the true system. Figure

4.5 shows that by about 20 iterations the 6th-order model matches the frequency

response of the true system. This performance is quite reasonable, and Appendix C

contains parameter track and frequency response plots showing its performance under

a variety of conditions. Another important point about this algorithm is that it does

not use the gradient terms that appear in (2.21). In fact, when the gradient terms

were incorporated in the algorithm, the performance was observed to be worse.

2. Recursive Least Squares (RLS) Algorithm

Unfortunately, there is not a well-defined algorithm that will serve as a

benchmark against which to test the data-adaptive Toeplitz approximation algorithm.

In this section we use, without derivation, the IIR RLS algorithm defined by(Ref. 5]:

0(k+1) = 0(k) + aR4+1ikne(n) (4.29)

where 0 = [bT aT]T is the parameter vector, On = [OnT CT]T is the gradient term

vector, and a is the forgetting factor. There are some real difficulties in keeping this

algorithm stable [Ref. 5], and it performs best when used to exactly model a system's

34



2 Data-Adaptive. M=6 N=6
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Figure 4.4: Parameter tracks and general rate of convergence for the IIR
data-adaptive Toeplitz approximation algorithm.
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Figure 4.5: Frequency response of the Toeplitz approximation algorithm
compared to the true system frequency response.
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Figure 4.6: Parameter tracks and general rate of convergence for the HIR
RLS algorithm.

parameters. The performance of this algorithm, when it is stable, is shown in Figure

4.6. However, for general system modeling where the exact order of the system is

unknown, IIR RLS is unsatisfactory. See Figures C.10 thru C.14 of Appendix C.

Comparing the performance of IIR RLS to that of data-adaptive IIR Toeplitz

approximation, we observe that the increased computations required in the Toeplitz

approximation algoritbm give improved performance. The stability of the Toeplitz

approximation algorithm is clearly evident when we consider the poles and zeros of

the model system as it converges. In Figure 4.7 the poles (denoted by x) and zeros

(denoted by o) move inside the unit circle as the number of iterations goes from 9 to

20. The fact that the poles and zeros stop moving as the algorithm continues to iter-

ate clearly demonstrates that it is stable. Also observe that the two additional poles

and zeros overlap at iteration k = 50, which effectively cancels their contribution to

the frequency response.

Similar performance is observed in the presence of noise, and the Toeplitz
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Figure 4.7: Pole-zero plots for the data-adaptive IIR Toeplitz approxima-
tion algorithm with M = N = 6.
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2 Data-Ada tive, M=20 N=20r Freg Response at k=100
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Figure 4.8: Parameter track and frequency response for the data-adaptive
IIR Toeplitz approximation algorithm with M = N = 20 and 10 dB additive
noise.

approximation algorithm converges faster to the true frequency response when higher

order model systems are computed. Notice how the true frequency resporse emerges

as the algorithm begins to converge for a M = N = 20 model system in the presence

of 10 dB additive noise (see Figure 4.9).
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V. CONCLUSIONS

In this thesis we applied the four concepts identified in the Introduction to

both FIR and IIR system parameter estimation. Of these, diagonal pertubation and

multiple partitioning are used to extend the basic fixed data algorithms of [Ref. 1]

for FIR systems and of [Ref. 2] for IIR systems. We then used all four concepts to

create new data-adaptive algorithms which extend the fixed data algorithms into the

data-adaptive domain. In the following sections we draw general conclusions about

the performance of these algorithms.

A. FIR ALGORITHMS

Improving the condition of the covariance matrix with increased diagonal dom-

inance produced improved performance over the original fixed data FIR Toeplitz

approximation algorithm. The algorithm converges fairly rapidly while using the

minimum amount of data. Figures A.1 thru A.5 of Appendix A show the general per-

formance of this algorithm in noise, as well as for over-modeling and under-modeling.

The major drawback of this algorithm is the problem of determining a suitable value

of the diagonal pertubation parameter a that will give optimal performance.

Partitioning the covariance matrix also produced improved performance of the

original fixed data FIR Toeplitz approximation algorithm. Using the minimum amount

of data, the partitioned Toeplitz approximation algorithm converges almost as rapidly

as the optimal case of the diagonal pertubation Toeplitz approximation algorithm.

Figures A.6 thru A.9 of Appendix A show the general performance of this algorithm

in noise, as well as for over-modeling and under-modeling. Significant features of this

algorithm are that it does not require choosing an optimizing parameter, and the
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partitioning reduces the computational intensity of the algorithm since the matricies

involved are smaller.

Extending the original fixed data FIR Toeplitz approximation algorithm to the

data-adaptive case gives an algorithm that performs quite well, equal to RLS, however

it is more computationally intensive than RLS. Establishing this data-adaptive FIR

algorithm is important because it demonstrates the potential for a data-adaptive IIR

version to work as well. Figures A.10 thru A.17 of Appendix A show the general

performance of this algorithm and RLS under different conditions of noise, as well as

for over-modeling and under-modeling.

B. IR ALGORITHMS

Applying the same diagonal pertubation and partitioning techniques used on

the fixed data FIR Toeplitz approximation algorithm to the IIR algorithm did not

produce the same improvement. Although these techniques did allow the algorithm

to converge with the desired minimum amount of data, the rate of convergence is

unacceptable. Figures B.1 thru B.9 of Appendix B show the general performance

of these algorithms under different conditions of data and noise, as well as for over-

modeling and under-modeling.

The data-adaptive IIR Toeplitz approximation algorithm succeeds in parameter

estimation where the corresponding IIR RLS algorithms fail. It performs well under a

wide range of noise and over-modeling conditions. We observed that even in moderate

noise (i.e., 10 to 20 dB) over-modeling with this algorithm can be used to determine

the true frequency response of the system being modeled. Figures C.1 thru C.14 of

Appendix C show how the algorithms perform under different conditions of noise,

as well as over-modeling and under-modeling. A significant consideration with this

algorithm is the large amount of computations required for each iteration.
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C. FUTURE WORK

Here we have reported general observations rather than a rigorous analytical

development on the performance of the algorithms presented in the thesis. As future

work, the results and conclusions from this work should be put on solid analytical

footing. Also, the algorithms presented in this thesis are developed for one-dimensonal

real data only. The algorithms may be extended to incorporate complex and multi-

dimensional data and related applications.
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APPENDIX A: FIR SYSTEM SIMULATIONS

This appendix contains plots corresponding to the FIR algorithms developed in

Chapter III. Figure A.1 shows the performance of the unmodified Toeplitz approxi-

mation algorithm (3.15). This plot also serves as a reference of the true system (3.8)

frequency response. The remainder of the plcls, Figures A.2-A.17, are in the follow-

ing general order: fixed data Toeplitz approximation with diagonal pertubation, fixed

data partitioned Toeplitz approximation, data-adaptive Toeplitz approximation, and

finally FIR RLS.
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6 FIR Fixed Data, P=20 Time vs Freq Res onse
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Figure A.1: The basic fixed data FIR Toeplitz approximation algorithm.
This plot shows the parameter tracks and frequency response of the basic Toeplitz
approximation algorithm (3.15). The correlation matrix was formed with P = 20
data points, and there was no additive noise in the output. The algorithm converges
rapidly under these conditions, as can be seen by the flat parameter tracks. Also
notice that the frequency response changes little as the number of iterations increase.
The frequency response plot for k = 20 iterations represents the frequency response
of the true system.
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FIR Fixed Data. P=11 Time vs Freq Re sonse
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Figure A.2: Parameter tracks and frequency response of the fixed data
Toeplitz approximation with diagonal pertubation algorithm.
Observe that even though the minimum number of data points (P = 11) were used to
form the correlation matrix, the algorithm converges rather quickly. The frequency
response plot for k = 30 iterations appears identical to the response of the true system
shown in Figure A.1. No noise was added to the output, the pertubation parameter
was a = 1, and the true system was exactly modeled with a 10ih-order model.
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4 FIR Fixed Data, P=9 Time vs Freq Response
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Figure A.3: Under-modeled example of the fixed data Toeplitz approxi-
mation with diagonal pertubation algorithm.
The 10"'-order true system was modeled with an 8th-order model. The algorithm does
a fairly good job preserving the frequency components of the true system, however it
takes a much greater number of iterations to achieve this result. No noise was added
to the output, and the pertubation parameter was a = 1.
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4 FIR Fixed Data, P=15 Time vs Freq Response

2-

E

-2
0 50

Iterations, k

Freq Response at k=l 1 Freq Response at k=30

o 0.5 - 0.5

0 01
0 1 2 3 0 1 2

Normalized Freq, o to pi Normalized Freq, o to pi

Figure A.4: Over-modeled example of the fixed data Toeplitz approxima-
tion with diagonal pertubation algorithm.
The 101h-order true system was modeled with a 14th-order model. The algorithm
converges rapidly, and by k = 30 iterations it matches the true system frequency
response. It is important to note that this result was achieved with the minimum
(P = 15) amount of data required. No noise was added to the output, and the
pertubation parameter was a = 3.
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FIR Fixed Data, P=21 Time vs Freq Response
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Figure A.5: Over-modeled example with 10 dB of additive noise for the
fixed data Toeplitz approximation with diagonal pertubation algorithm.
The 10th-order true system was modeled with a 20th-order model. The additive white
noise tends to slow down the algorithm, and distorts the frequency response it is able
to achieve. The pertubation parameter was o = 3, and 10 dB of white noise was
added to the output.
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FIR Fixed Data, P= 1 Time vs Freq Response

E I,------------------------------------------ '

0 10 20 30

Iterations, k

Freg Response at k=3 Freg Response at k=30

SP 0.5 . 0.5-

1 1

0 1 2 3 0 1 2 3
Normalized Freq, o to pi Normalized Freq, o to pi

Figure A.6: Parameter tracks and frequency response of the fixed data
partitioned Toeplitz approximation algorithm.
Observe that even though the minimum number of data points (P = 11) were used to
form the correlation matrix, the algorithm converges rather quickly. The frequency
response plot for k = 30 iterations appears identical to the response of the true system
shown in Figure A.1. No noise was added to the output, and the true system was
exactly modeled with a 10th-order model.
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FIR Fixed Data, P=9 Time vs Freq Res nse
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Figure A.7: Under-modeled example of the fixed data partitioned Toeplitz
approximation algorithm.
The 10th-order true system was modeled with an 8h"-order model. The algorithm does
a fairly good job preserving the frequency components of the true system, however it
takes a much greater number of iterations to achieve this result. No noise was added
to the output.
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FIR Fixed Data, P=15 Time vs Freq Re se
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Figure A.8: Over-modeled example of the fixed data partitioned Toeplitz
approximation algorithm.
The 10th-order true system was modeled with a 14*h-order model. The algorithm
converges rapidly, and by k = 30 iterations it matches the true system frequency
response. It is important to note that this result was achieved with the minimum
(P = 15) amount of data iequired. No noise was added to the output.
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4 FIR Fixed Data. P=21 Time vs Freq Response
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Figure A.9: Over-modeled example with 10 dB of additive noise for the

fixed data partitioned Toeplitz approximation algorithm.
The 10th-order true system was modeled with a 20th-order model. The additive white

noise tends to slow down the algorithm, and distorts the frequency response it is able

to achieve. There was 10 dB of white noise added to the output.
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FIR Data-Adaptive Time vs Freq Response
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Figure A.1O: Parameter tracks and frequency response of the
data-adaptive Toeplitz approximation algorithm.
Observe that the algorithm converges to the true solution and frequency response in
ten iterations. In this example no noise was added to the output, and the performance
above is for an exact modeling of the 10th-order true system. Comparing this with
the RLS results shown in Figure A.14 reveals that they behave exactly the same.
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FIR Data-Adaptive Time vs Freq Res onse

I 2

0 50 100 150 200

Iterations, k

Frecg Response at k=8 Freq Response at k=150

o o.

ib 0.5 o 0.5

0 0
0 1 2 3 0 1 2 3

Normalized Freq, o to pi Normalized Freq, o to pi

Figure A.11: Under-modeled example of the data-adaptive Toeplitz ap-
proximation algorithm.
The 10th-order true system was modeled with an 8th-order model. The algorithm
tries to preserve the frequency components of the true system, however it takes a
much greater number of iterations to achieve this result. No noise was added to the
output.
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4 FIRData-Adaptive. M=14 Time vs Freq Response

J 3 -

> 2

E 1

--- ---- -- . . .. 0 t-

-- . - - -

0 5 10 15 20

Iterations, k

Freq Response at k=5 Freq Response at k=15

1 1

=-0.5 =0.5

0 01
0 1 2 3 0 2 3

Normalized Freq, o to pi Normalized Freq, o to pi

Figure A.12: Over-modeled example of the data-adaptive Toeplitz approx-
imation algorithm.
The 10th-order true system was modeled with a 14th-order model. The algorithm
converges rapidly, and for iterations k = 10 and higer it matches the true system
frequency response. It is important to note that all of the additional parameters
beyond the ten required were driven to zero by the algorithm. No noise was added
to the output.
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100 FIR Data-AdaptiveM=20 Time vs Freq Response
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Figure A.13: Over-modeled example with 10 dB of additive noise for the
data-adaptive Toeplitz approximation algorithm.
The 10"h-order true system was modeled with a 20'h-order model The additive
white noise tends to slow down the algorithm, but only slightly distorts the frequency
response it is able to achieve. There was 10 dB of white oise added to the output.
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FIR Data-Adaptive Time vs Freq Response
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Figure A.14: Parameter tracks and frequency response of the FIR RLS
algorithm.
Observe that the algorithm converges to the true solution and frequency response in
ten iterations. In this example no noise was added to the output, and the performance
above is for an exact modeling of the 10th-order true system. Comparing this with the
data-adaptive Toeplitz approximation algorithm results shown in Figure A.10 reveals
that they behave exactly the same.
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FIR Data-Adaptive Time vs Freq Res onse
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Figure A.15: Under-modeled example of the FIR RLS algorithm.
The 10th-order true system was modeled with an 8th-order model. The algorithm
tries to preserve the frequency components of the true system, however it takes a
much greater number of iterations to achieve this result. No noise was added to the
output.
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FIR Data-Adaptive. M=14 Time vs Freq Response
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Figure A.16: Over-modeled example of the FIR RLS algorithm.
The 10th-order true system was modeled with a 14t"-order model. The algorithm
converges rapidly, and by iteration k = 10 and higher it matches the true system
frequency response. It is important to note that all of the additional parameters
beyond the ten required were driven to zero by the algorithm. No noise was added
to the output.
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100 FIR Data-Adaptive. M=20 Time vs Freq Response
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Figure A.17: Over-modeled example with 10 dB of additive noise for the
data-adaptive Toeplitz approximation algorithm.
The 10th-order true system was modeled with a 201h -order model. The additive
white noise tends to slow down the algorithm, but only slightly distorts the frequency
response it is able to achieve. There was 10 dB of white noise added to the output.
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APPENDIX B: FIXED DATA IIR SYSTEM
SIMULATIONS

This appendix contains plots corresponding to the fixed data IIR algorithms de-

veloped in Chapter IV. Figure B.I shows the performance of the unmodified Toeplitz

approximation algorithm (4.8). This plot also serves as a reference of the true sys-

tem (4.9) frequency response. The remainder of the plots, Figures B.2-B.9 illustrate

the convergence performance of the fixed data Toeplitz approximation with diagonal

pertubation algorithm followed by the fixed data partitioned Toeplitz approximation

algorithm.
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IIR Fixed Data. P=100 Time vs Freq Response
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Figure B.1: The basic fixed data IIR Toeplitz approximation algorithm.
This plot shows the parameter tracks and frequency response of the basic Toeplitz
approximation algorithm (4.8). The correlation matrix was formed with P = 100
data points, and there was no additive noise in the output. The algorithm converges
rapidly under these conditions, as can be seen by the fiat parameter tracks. Also
notice that the frequency response changes little as the number of iterations increase.
The frequency response plot for k = 30 iterations represents the frequency response
of the true system.
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IIR Fixed Data. P=9 Time vs Freq Response
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Figure B.2: Parameter tracks and frequency response of the fixed data
Toeplitz approximation with diagonal pertubation algorithm.
Observe that when the minimum number of data points (P = 9) were used to form
the correlation matrix, the algorithm converges very slowly. The frequency response

plot for k = 50 iterations is not very close to the response of the true system shown
in Figure B.1. No noise was added to the output, the pertubation parameters were
a= 1 and o, = 10, and the true system was exactly modeled with a 4th-order model.
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4R Fixed Data, P=7 Time vs Freq Response
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Figure B.3: Under-modeled example of the fixed data Toeplitz approxi-
mation with diagonal pertubation algorithm.
The 4th-order true system was modeled with an 3"-order model. The algorithm does
a poor job preserving the frequency components of the true system, and it takes a
much greater number of iterations to achieve this result. No noise was added to the
output, and the pertubation parameters were a. = 4 and ay = 50.
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HR Fixed Data. P=21 Time vs Freq Response
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Figure B.4: Over-modeled example of the fixed data Toeplitz approxima-
tion with diagonal pertubation algorithm.

The 4th--order true system was modeled with a 10th--order model. The algorithm

converges more rapidly than the previous two examples, and by k = 100 iterations it
nearly matches the true system frequency response. It is important to note that this

result was achieved with the minimum (P = 21) amount of data required. No noise
was added to the output, and the pertubation parameters were , = 3 and = 100.
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fIR Fixed Data, P=41 Time vs Freq Response
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Figure B.5: Over-modeled example with 10 dB of additive noise for the
fixed data Toeplitz approximation with diagonal pertubation algorithm.
The 4thorder true system was modeled with a 20th-order model. The additive white
noise tends to slow down the algorithm, but only slightly distorts the frequency
response it is able to achieve. The pertubation parameters were ,o = 5 and a. = 100,
and 10 dB of white noise was added to the output.
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4R Fixed Data. P=9 Time vs Frq Response
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Figure B.6: Parameter tracks and frequency response of the fixed data
partitioned Toeplitz approximation algorithm.
Observe that when the minimum number of data points (P = 9) were used to form
the correlation matrix, the algorithm converges very quickly. The frequency response
plot for k = 50 iterations is not very close to the response of the true system shown
in Figure B.1. No noise was added to the output, and the true system was exactly
modeled with a 4th-order model.
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4 ]R Fixed Data. P=7 Time vs Freq Response
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Figure B.7: Under-modeled example of the fixed data partitioned Toeplitz
approximation algorithm.
The 4h-order true system was modeled with an 3d-order model. The algorithm does
a poor job preserving the frequency components of the true system, and it takes a
much greater number of iterations to achieve this result. No noise was added to the
output.
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40 IIR Fixed Data, P=21 Time vs Freq Response
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Figure B.8: Over-modeled example of the fixed data partitioned Toeplitz
approximation algorithm.
The 4th-order true system was modeled with a 10-order model. The algorithm
converges rapidly, and by k = 20 iterations it matches the true system frequency
response. It is important to note that this result was achieved with the minimum
(P = 21) amount of data required. No noise was added to the output.
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HIR Fixed Data. P=41 Time vs Freq Response
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Figure B.9: Over-modeled example with 10 dB of additive noise for the
fixed data partitioned "Toeplitz approximation algorithm.
The 4th--order true system was modeled with a 20th-order model. The additive white
noise tends to slow down the algorithm, but only slightly distorts the frequency
response it is able to achieve. There was 10 dB of white noise added to the output.
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APPENDIX C: DATA-ADAPTIVE IIR
SYSTEM SIMULATIONS

This appendix contains plots corresponding to the data-adaptive IIR algorithms

developed in Chapter IV. Figure C. 1 shows the performance of the unmodified fixed

data Toeplitz approximation algorithm (4.8). This plot also serves as a reference of

the true system (4.9) frequency response. The remainder of the plots, Figures C.2-

C.4, illustrate the performance of the data-adaptive Toeplitz approximation algorithm

followed by the IIR RLS algorithm.
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IIR Fixed Data, P=100 Time vs Freq Response
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Figure C.1: The basic fixed data HR Toeplitz approximation algorithm.
This plot shows the parameter tracks and frequency response of the basic Toeplitz
approximation algorithm (4.8). The correlation matrix was formed with P = 100
data points, and there was no additive noise in the output. The algorithm cc-iverges
rapidly under these conditions, as can be seen by the flat parameter tracks. Also
notice Lrat the frequency response changes little as the number of iterations increase.
The frequency response plot for k = 30 iterations represents the frequency response
of the true system.
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4 Data-Adaptive, M=4 N=4 Time vs Freq Response
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Figure C.2: Parameter tracks and frequency response of the data-adaptive
Toeplitz approximation algorithm.
Observe that the algorithm converges to the true solution and frequency response
in about 60 iterations. In this example no noise was added to the output, and the
performance above is for an exact modeling of the 4th-order true system. Comparing
this with the RLS results shown in Figure B.18 reveals that they do not behave the
same as in the FIR case.
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Figure C.3: Pole-zero plots for the data-adaptive Toeplitz approximation
algorithm.
Observe that as the algorithm converges to the true solution, the poles (x's) move
inside the unit circle. After about 50 iterations they stop moving, and their location
corresponds to the frequency response shown in Figure B.10. Finally, we see that
there is almost no movement as the algorithm iterates from k = 70 to 100 iterations.
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Data-Adaptive, M=3 N=3 Time vs Freq Response
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Figure 0.4: Under-modeled example of the data-adaptive Toeplitz approx-
imation algorithm.
The 4th-order true system was modeled with a 3rd-order model. The algorithm tries
to preserve the frequency components of the true system, but with only three poles
and zeros it is unable to preserve both of the main components. No noise was added
to the output.

74

. . .. ....... 50 100 0- 
-

to 11,~lllllllllllll



2 k=lO to 10 2 k=lO to 20

20

Co o

0. E -1
E -1

-2 -2

Real Axis Real Axis

2 k=20 to 50 2 k=50 to 100

• .. 1

0 - 0 -I

-2 -2

Real Axis Real Axis

Figure C.5: Pole-zero plots for the under-modeled data-adaptive Toeplitz
approximation algorithm.
Observe that as the algorithm converges, the poles (x's) still move inside the unit
circle. After about 50 iterations their location corresponds to the frequency response
shown in Figure B.12. Finally, we see that the pole-zero pair on the real axis tend to
cancel each other, which explains why there is only one primary frequency component
in Figure B.12.

75



2 Data-Adaptive, M=10 N=10 Time vs Freq Response
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Figure C.6: Over-modeled example of the data-adaptive Toeplitz approx-

imation algorithm.

The 41h-order true system was modeled with a 1Oth-order model. The algorithm

converges rapidly, and by k = 50 iterations it matches the true system frequency

response. It is important to note that all of the additional pole zero pairs beyond the

four required were driven to cancel each other by the algorithm. No noise was added

to the output.
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Figure C.7: Pole-zero plots for the over-modeled data-adaptive Toeplitz
approximation algorithm.
Observe that as the algorithm converges, the poles (x's) are all inside the unit circle.
After about 50 iterations their location corresponds to the frequency response shown
i. Figure B.14. Finally, we see that the pole-zero pairs different from those shown in
Figure B.11 are overlapping and tend to cancel each other, which explains why both
of the dominant frequency components in Figure B.10 are present.

77



Data-Adaptive, M=20 N=20 Time vs Freq Response
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Figure 0.8: Over-modeled example with 10 dB of additive noise for the
data-adaptive Toeplitz approximation algorithm.
The 41h-order true system was modeled with a 201h-order model. The additive white
noise teihds to slow down the algorithm, but only slightly distorts the frequency
response it is able to achieve. There was 10 dB of white noise added to the output.
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Figure C.9: Pole-zero plots for the over-modeled data-adaptive Toeplitz
approximation algorithm with 10dB additive noise.
Observe that as the algorithm converges, the poles (x's) are all inside the unit circle.
After about 100 iterations their location corresponds to the frequency response shown
in Figure B.16. Again, we see that the pole-zero pairs different from those shown in
Figure B.11 are almost overlapping and tend to cancel each other, which explains
why both of the dominant frequency components in Figure B.10 are present.
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4 Data-Adaptive, M=4 N- 4 Time vs Freq Response
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Figure C.1O: Parameter tracks and frequency response of the hIR RLS
algorithm.
Observe that the algorithm converges to the true solution and frequency response in
ten iterations. In this example no noise was added to the output, and the performance
above is for an exact modeling of the 4th-order true system. Comparing this with the
data-adaptive Toeplitz approximation algorithm results shown in Figure B.10 reveals
that they behave differently.
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Figure C.11: Pole-zero plots for the IIR RLS algorithm.
Observe that as the algorithm converges to the true solution, the poles (x's) move
inside the unit circle. After about 15 iterations they stop moving, and their location
corresponds to the frequency response shown in Figure B.18. Finally, we see that
there is almost no movement as the algorithm iterates from k = 15 to 50 iterations,
which indicates that the algorithm has stabilized.
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100 Data-Adaptive, M=3 N=3 Time vs Freq Response
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Figure C.12: Under-modeled example of the IIR RLS algorithm.
The 4th-order true system was modeled with an 3d-order model. The algorithm
tries to preserve the frequency components of the true system, however it becomes
unstable after about 50 iterations. No noise was added to the output.
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Figure C.13: Pole-zero plots for the under-modeled IIR RLS algorithm.
Observe that as the algorithm converges, the poles (x's) are still outside the unit
circle. After about 50 iterations their location reflects the fact that the algorithm is
unstable, and it fails to converge.
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xl0Data-Adaptive, M=10 N=10 Time vs Freq Response
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Figure C.14: Over-modeled example of the IIR: RLS algorithm.
The 41h--order true system was modeled with a 101h--order model. The algorithm also
fails to converge, as can be seen after about 29 iterations in tbhe parameter track plot.
It is worth noting that for a brief number of iterations, from about k = 10 to 27, the
algorithm does produce the true system frequency response. Unfortunately, this is

not a stable result of the algorithm. No noise was added to the output.
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APPENDIX D: MATLAB CODE FOR IIR
ADAPTIVE ALGORITHM

% This is the IIR ADAPTIVE algorithm which uses the Toeplitx Approximation

% splitting R=T+S.

N = input('How many poles in the system model would you like, N = ? '),

M = input('How many zeros in the system model would you like, M = ? '),

k = input('Enter the number of iterations (i.e. k = 100). ');

noise = input('How much noise would you like (i.e., noise = .1) ? ');

maxMN = max(M+1,N);

MN =M + N;

s = .0000001; % A small amount used to start the algorithm below.

L =1;

P = 1; % Sart with one data point.

% Now generate the "true" system data.

rand('normal');

rand('seed',0);

a - [1,-2.76,3.809,-2.654,.924; % Thes'e are the true system
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b = [1,-.9,.81,-.65,.36]; % coefficients.

x = [zeros(M+1,1);rand(P + k,1)]; % The input data, white noise.

y = filter(b,a,x); % The output data.

x = flipud(x); % Reorder the input for convenience.

rand('seed',5); % A separate noise generator.

y = y + sqrt(noise) * [zeros(M+1,i);rand(P+k,1)]; % Add noise to output.

y = flipud(y);

y = [y(l:P+k,l);zeros(maxMN+1,1)]; % The additional zeros are used in the

x = [x(l:P+k,l);zeros(maxMN+1,1)J; % computation of Z below, read it.

% Now I will construct data matrix, Z

Z = zeros(P,MN + 1);

for i = 1:P

Z(i,:) = [y(i+k+2:N+k+l+i)',x(i+k+1:i+k+M+1) ';

% The counting index

% ensures that the algorithm starts with zero data points.

end

% Now generate the data correlation matrix, R,

%. and partition it into 4 parts given by M and N.

R = Z' * Z;

Ryy - R(1:N,I:N);
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Ryx - R(1:N,N+1:M+N+1);

Rxy = Ryx';

Rxx = R(N+1:M+N+I,N+1:M+N+I);

% Now generate the Toepiitz approximation to Ryy and Rxx.

tyy = zeros(N,1);

txx = zeros(M+1,1);

for i = 1:N

tyy(i) = mean(diag(Ryy,i-1));

end

for i - 1:M+1

txx(i) = mean(diag(Rxx,i-1));

end

Tyy = toeplitz(tyy) + s * eye(N); % s is added so that

Txx = toeplitz(txx) + s * eye(M+1); % these may be inverted.

Tiy = inv(Tyy);

Tix = inv(Txx);

% Now generate the cross-correlation vector, r,

% and partition it into two parts given by M and N.
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r =Z' * y(2+k:P~k+l);

ry =r(1:N);

=x r(N+1:M+N+1);

% Now compute the initial estimates of the parameter vectors.

b = Tiy * ry;

a = Tix *r=

Qk = zeros (k.M+N+1); _% Holds the results of each iteration.

for i = 1:k; % This is the algorithm'!!!

Xn = y(k+3-i k+N+2-i); % get new output data

Xm = x(k42-i :k+2+M-i); % get new input data

Yn = y(k+2-i); % get next output data point

%. Use the matrix inverse lemma to compute the next

% values for Tiy and Tix, note that L=1.

Tiy - MTy - ( Tiy * Xii * XnIi * Tiy) / (L+Xn'*Tiy*Xn))/L;

Tix - (Tix - ( Tix * Xm * XjI * Tix) / (L+Xm'*Tix*Xm))/L;

% Update all of the rest of the time-varying quantities.

Ry Ryy+ Xii * XnI';
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Ryx = Ryx + Xii * Xii';

Rxy =Rxy + Xm * Xii';

Rxx = Rxx + Xm * Xmi';

ry = ry + Xii * Yn;

rx = rx + Xi * Yn;

% Compute the next value of the parameter vectors.

b = b + Tiy * (ry - Ryx * a - Ryy *b)

a =a +Tix *(rx -Rxy *b - Rxx *a);

Qk(i,:)=

end;
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